Finite mixture models for exponential repeated data
نویسندگان
چکیده
The analysis of finite mixture models for exponential repeated data is considered. The mixture components correspond to different possible states of the statistical units. Dependency and variability of repeated data are taken into account through random effects. For each component, an exponential mixed model is thus defined. When considering parameter estimation in this mixture of exponential mixed models, the EM algorithm cannot be directly used since the marginal distribution of each mixture component cannot be analytically derived. In this paper, we propose two parameter estimation methods. The first one uses a linearisation specific to each exponential mixed model within each component. The second approach uses a Metropolis-Hastings algorithm as a building block of an MCEM algorithm. Key-words: Generalized linear model, Random effect, Mixture model, EM algorithm, Metropolis-Hastings algorithm ∗ Corresponding author. Email : [email protected] in ria -0 01 29 77 7, v er si on 2 8 Fe b 20 07 Modèles de mélange fini pour des données exponentielles répétées Résumé : Nous nous intéressons à un modèle de mélange pour des données répétées de loi exponentielle. Les composants du mélange traduisent différents états possibles des individus. Pour chacun de ces composants, on modélise la dépendance et l’extra-variabilité dues à la répétition des données par l’introduction d’effets aléatoires. Dans ce modèle de mélange exponentiel mixte, la distribution marginale n’étant pas accessible, l’utilisation de l’algorithme EM n’est pas directement envisageable. Nous proposons alors une première méthode d’estimation des paramètres basée sur une linéarisation spécifique à la loi exponentielle. Nous proposons ensuite une méthode plus générale puisque s’appuyant sur une étape de Metropolis-Hastings pour construire un algorithme de type MCEM. Cet algorithme est applicable pour un mélange de modèles linéaires généralisés mixtes quelconques. Mots-clés : Modèle linéaire généralisé, Effet aléatoire, Modèle de mélange, Algorithme EM, Algorithme de Metropolis-Hastings in ria -0 01 29 77 7, v er si on 2 8 Fe b 20 07 Finite mixture models for exponential repeated data 3
منابع مشابه
A mixture model-based approach to the clustering of exponential repeated data
The analysis of finite mixture models for exponential repeated data is considered. The mixture components correspond to different unknown groups of the statistical units. Dependency and variability of repeateddata are taken into account through randomeffects. For each component, an exponential mixed model is thus defined. When considering parameter estimation in this mixture of exponential mixe...
متن کاملThe Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models
Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...
متن کاملAn Overview of the New Feature Selection Methods in Finite Mixture of Regression Models
Variable (feature) selection has attracted much attention in contemporary statistical learning and recent scientific research. This is mainly due to the rapid advancement in modern technology that allows scientists to collect data of unprecedented size and complexity. One type of statistical problem in such applications is concerned with modeling an output variable as a function of a sma...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملVariational Bayesian Dirichlet-Multinomial Allocation for Exponential Family Mixtures
We study a Bayesian framework for density modeling with mixture of exponential family distributions. Our contributions: •A variational Bayesian solution for finite mixture models • Show that finite mixture models (with a Bayesian setting) can determine the mixture number automatically • Justify this result with connections to Dirichlet Process mixture models •A fast variational Bayesian solutio...
متن کامل